3,831 research outputs found

    Holographic metals at finite temperature

    Full text link
    A holographic dual description of a 2+1 dimensional system of strongly interacting fermions at low temperature and finite charge density is given in terms of an electron cloud suspended over the horizon of a charged black hole in asymptotically AdS spacetime. The electron star of Hartnoll and Tavanfar is recovered in the limit of zero temperature, while at higher temperatures the fraction of charge carried by the electron cloud is reduced and at a critical temperature there is a second order phase transition to a configuration with only a charged black hole. The geometric structure implies that finite temperature transport coefficients, including the AC electrical conductivity, only receive contributions from bulk fermions within a finite band in the radial direction.Comment: LaTex 16 pages, 12 figures, v2: Added reference. Error in free energy corrected. Phase transition to AdS-RN black brane is third order rather than second order as was claimed previousl

    Lovelock-Lifshitz Black Holes

    Full text link
    In this paper, we investigate the existence of Lifshitz solutions in Lovelock gravity, both in vacuum and in the presence of a massive vector field. We show that the Lovelock terms can support the Lifshitz solution provided the constants of the theory are suitably chosen. We obtain an exact black hole solution with Lifshitz asymptotics of any scaling parameter zz in both Gauss-Bonnet and in pure 3rd order Lovelock gravity. If matter is added in the form of a massive vector field, we also show that Lifshitz solutions in Lovelock gravity exist; these can be regarded as corrections to Einstein gravity coupled to this form of matter. For this form of matter we numerically obtain a broad range of charged black hole solutions with Lifshitz asymptotics, for either sign of the cosmological constant. We find that these asymptotic Lifshitz solutions are more sensitive to corrections induced by Lovelock gravity than are their asymptotic AdS counterparts. We also consider the thermodynamics of the black hole solutions and show that the temperature of large black holes with curved horizons is proportional to r0zr_0^z where zz is the critical exponent; this relationship holds for black branes of any size. As is the case for asymptotic AdS black holes, we find that an extreme black hole exists only for the case of horizons with negative curvature. We also find that these Lovelock-Lifshitz black holes have no unstable phase, in contrast to the Lovelock-AdS case. We also present a class of rotating Lovelock-Lifshitz black holes with Ricci-flat horizons.Comment: 26 pages, 10 figures, a few references added, typo fixed and some comments have been adde

    Stellar spectroscopy: Fermions and holographic Lifshitz criticality

    Full text link
    Electron stars are fluids of charged fermions in Anti-de Sitter spacetime. They are candidate holographic duals for gauge theories at finite charge density and exhibit emergent Lifshitz scaling at low energies. This paper computes in detail the field theory Green's function G^R(w,k) of the gauge-invariant fermionic operators making up the star. The Green's function contains a large number of closely spaced Fermi surfaces, the volumes of which add up to the total charge density in accordance with the Luttinger count. Excitations of the Fermi surfaces are long lived for w <~ k^z. Beyond w ~ k^z the fermionic quasiparticles dissipate strongly into the critical Lifshitz sector. Fermions near this critical dispersion relation give interesting contributions to the optical conductivity.Comment: 38 pages + appendices. 9 figure

    A soliton menagerie in AdS

    Full text link
    We explore the behaviour of charged scalar solitons in asymptotically global AdS4 spacetimes. This is motivated in part by attempting to identify under what circumstances such objects can become large relative to the AdS length scale. We demonstrate that such solitons generically do get large and in fact in the planar limit smoothly connect up with the zero temperature limit of planar scalar hair black holes. In particular, for given Lagrangian parameters we encounter multiple branches of solitons: some which are perturbatively connected to the AdS vacuum and surprisingly, some which are not. We explore the phase space of solutions by tuning the charge of the scalar field and changing scalar boundary conditions at AdS asymptopia, finding intriguing critical behaviour as a function of these parameters. We demonstrate these features not only for phenomenologically motivated gravitational Abelian-Higgs models, but also for models that can be consistently embedded into eleven dimensional supergravity.Comment: 62 pages, 21 figures. v2: added refs and comments and updated appendice

    Effective AdS/renormalized CFT

    Full text link
    For an effective AdS theory, we present a simple prescription to compute the renormalization of its dual boundary field theory. In particular, we define anomalous dimension holographically as the dependence of the wave-function renormalization factor on the radial cutoff in the Poincare patch of AdS. With this definition, the anomalous dimensions of both single- and double- trace operators are calculated. Three different dualities are considered with the field theory being CFT, CFT with a double-trace deformation and spontaneously broken CFT. For the second dual pair, we compute scaling corrections at the UV and IR fixed points of the RG flow triggered by the double-trace deformation. For the last case, we discuss whether our prescription is sensitive to the AdS interior or equivalently, the IR physics of the dual field theory.Comment: 20 pages, 3 figure

    Hamilton-Jacobi Renormalization for Lifshitz Spacetime

    Get PDF
    Just like AdS spacetimes, Lifshitz spacetimes require counterterms in order to make the on-shell value of the bulk action finite. We study these counterterms using the Hamilton-Jacobi method. Rather than imposing boundary conditions from the start, we will derive suitable boundary conditions by requiring that divergences can be canceled using only local counterterms. We will demonstrate in examples that this procedure indeed leads to a finite bulk action while at the same time it determines the asymptotic behavior of the fields. This puts more substance to the belief that Lifshitz spacetimes are dual to well-behaved field theories. As a byproduct, we will find the analogue of the conformal anomaly for Lifshitz spacetimes.Comment: 27 pages; minor improvements, references added, published versio

    Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.

    Get PDF
    CD4(+) T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i) that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+) cells, and (ii) that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+) compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+) T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p) and disappearance (d*) rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul) participated. CCR5-expression defined a CD4(+) subpopulation of predominantly CD45R0(+) memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+) vs CCR5(-); healthy controls; P<0.01). Conversely, CXCR4 expression defined CD4(+) T-cells (predominantly CD45RA(+) naive cells) with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+)CD45R0(+)CD4(+) memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05), naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9) or X4-tropic (n = 4). Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively). Our data are most consistent with models in which CD4(+) T-cell loss is primarily driven by non-specific immune activation

    Analytical study on holographic superconductors in external magnetic field

    Full text link
    We investigate the holographic superconductors immersed in an external magnetic field by using the analytical approach. We obtain the spatially dependent condensate solutions in the presence of the magnetism and find analytically that the upper critical magnetic field satisfies the relation given in the Ginzburg-Landau theory. We observe analytically the reminiscent of the Meissner effect where the magnetic field expels the condensate. Extending to the D-dimensional Gauss-Bonnet AdS black holes, we examine the influence given by the Gauss-Bonnet coupling on the condensation. Different from the positive coupling, we find that the negative Gauss-Bonnet coupling enhances the condensation when the external magnetism is not strong enough.Comment: revised version, to appear in JHE

    Degenerate Stars and Gravitational Collapse in AdS/CFT

    Get PDF
    We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the "Chandrasekhar limit" beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.Comment: 75 page

    Holographic Entanglement Entropy in P-wave Superconductor Phase Transition

    Full text link
    We investigate the behavior of entanglement entropy across the holographic p-wave superconductor phase transition in an Einstein-Yang-Mills theory with a negative cosmological constant. The holographic entanglement entropy is calculated for a strip geometry at AdS boundary. It is found that the entanglement entropy undergoes a dramatic change as we tune the ratio of the gravitational constant to the Yang-Mills coupling, and that the entanglement entropy does behave as the thermal entropy of the background black holes. That is, the entanglement entropy will show the feature of the second order or first order phase transition when the ratio is changed. It indicates that the entanglement entropy is a good probe to investigate the properties of the holographic phase transition.Comment: 19 pages,15 figures, extended discussion in Sec.5, references adde
    corecore